

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Welcome

This Swift Stellar SDK helps iOS and macOS developers to interact with the Stellar Blockchain and its Ecosystem.

The SDK has three main uses:

	It helps you to query the blockchain by using the Horizon endpoints provided by Stellar.

	It helps you to build, sign and submit transactions to the Stellar Network.

	It helps you to interact with the Stellar Ecosystem (e.g. Anchors), by providing implementations of different Stellar Ecosystem Proposals [https://github.com/stellar/stellar-protocol/tree/master/ecosystem].

The goal of this documentation is to provide you knowledge of how to use the different functions of SDK in your app.

Before you start, please familiarize yourself with the basic concepts of Stellar. Take a look at the Stellar developer site [https://developers.stellar.org/docs/].

We also recommend that you use the Stellar Laboratory [https://laboratory.stellar.org/] tools while learning to implement applications that access the Stellar Network. It provides a set of tools that enables you to try out and learn about the Stellar Network. With the laboratory you can manually build transactions, sign them, and submit them to the network via the browser. It can also make requests to any of the Horizon endpoints.

Documentation content

We have structured the documentation in such a way that it starts with the basics and builds on this to cover the more advanced topics. Of course, it can also be used as a reference work.

Many of the source code examples from the documentation can also be found as test cases [https://github.com/Soneso/stellar-ios-mac-sdk/tree/master/stellarsdk/stellarsdkTests] in the source code of the SDK. If you don’t find what you search for in this documentation, we recommend you to also look for it in the test cases [https://github.com/Soneso/stellar-ios-mac-sdk/tree/master/stellarsdk/stellarsdkTests], because they cover the whole functionality of the SDK.

Topics	Description
:—	:—
Overview	Gives you an overview and insights about the functionality of the SDK.
Working with accounts	Shows you how to create new accounts, query their data, update them by using the SDK.
Send and receive native Payments	Describes how to send native XLM payments from one account to another. Also describes how to query them.
Assets & trustlines	Describes how to work with non native assets (issue, transfer, query, etc.).
Querying data	Shows how to query data from the Stellar Network.
Streaming	Learn how to listen for events such as payments or trades as they occur on the stellar network.
Path Payments	Learn how to use path payments with the sdk.
Trading: SDEX and Liquidity Pools	Learn how to manage offers, query the orderbook and other things related to trading.
Claimable Balances	Describes how to work with claimable balances by using the SDK.
Sponsoring Future reserves	Describes how to sponsor and revoke future reserves by using the SDK.
Stellar Ecosystem Proposals	Learn how to work with the SEP’s implementations of this SDK.

Next chapter is Overview.

SEP-0011 - Txrep: human-readable low-level representation of Stellar transactions

Txrep: human-readable low-level representation of Stellar transactions is described in SEP-0011 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0011].

The following examples show how to generate Txrep from transaction envelopes (base64 encoded xdr) and how to parse and convert Txrep back to transaction envelopes.

Generate Txrep from transaction envelope

let envelope = "AAAAAgAAAAArFkuQQ4QuQY6SkLc5xxSdwpFOvl7VqKVvrfkPSqB+0AAAAGQApSmNAAAAAQAAAAEAAAAAW4nJgAAAAABdav0AAAAAAQAAABZFbmpveSB0aGlzIHRyYW5zYWN0aW9uAAAAAAABAAAAAAAAAAEAAAAAQF827djPIu+/gHK5hbakwBVRw03TjBN6yNQNQCzR97QAAAABVVNEAAAAAAAyUlQyIZKfbs+tUWuvK7N0nGSCII0/Go1/CpHXNW3tCwAAAAAX15OgAAAAAAAAAAFKoH7QAAAAQN77Tx+tHCeTJ7Va8YT9zd9z9Peoy0Dn5TSnHXOgUSS6Np23ptMbR8r9EYWSJGqFdebCSauU7Ddo3ttikiIc5Qw="

let txRep = try TxRep.toTxRep(transactionEnvelope:envelope)

print(txRep)

Result:

type: ENVELOPE_TYPE_TX
tx.sourceAccount: GAVRMS4QIOCC4QMOSKILOOOHCSO4FEKOXZPNLKFFN6W7SD2KUB7NBPLN
tx.fee: 100
tx.seqNum: 46489056724385793
tx.cond.type: PRECOND_TIME
tx.cond.timeBounds.minTime: 1535756672
tx.cond.timeBounds.maxTime: 1567292672
tx.memo.type: MEMO_TEXT
tx.memo.text: "Enjoy this transaction"
tx.operations.len: 1
tx.operations[0].sourceAccount._present: false
tx.operations[0].body.type: PAYMENT
tx.operations[0].body.paymentOp.destination: GBAF6NXN3DHSF357QBZLTBNWUTABKUODJXJYYE32ZDKA2QBM2H33IK6O
tx.operations[0].body.paymentOp.asset: USD:GAZFEVBSEGJJ63WPVVIWXLZLWN2JYZECECGT6GUNP4FJDVZVNXWQWMYI
tx.operations[0].body.paymentOp.amount: 400004000
tx.ext.v: 0
signatures.len: 1
signatures[0].hint: 4aa07ed0
signatures[0].signature: defb4f1fad1c279327b55af184fdcddf73f4f7a8cb40e7e534a71d73a05124ba369db7a6d31b47cafd118592246a8575e6c249ab94ec3768dedb6292221ce50c

Transaction envelope containing a fee bump transaction

let envelope = "AAAABQAAAABkfT0dQuoYYNgStwXg4RJV62+W1uApFc4NpBdc2iHu6AAAAAAAAAGQAAAAAgAAAAAx5Qe+wF5jJp3kYrOZ2zBOQOcTHjtRBuR/GrBTLYydyQAAAGQAAVlhAAAAAQAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAVoZWxsbwAAAAAAAAEAAAAAAAAAAAAAAABkfT0dQuoYYNgStwXg4RJV62+W1uApFc4NpBdc2iHu6AAAAAAL68IAAAAAAAAAAAEtjJ3JAAAAQFzU5qFDIaZRUzUxf0BrRO2abx0PuMn3WKM7o8NXZvmB7K0zvS+HBlmDo2P/M3IZpF5Riax21neE0N9/WiHRuAoAAAAAAAAAAdoh7ugAAABARiKZWxfy8ZOPRj6yZRTKXAp1Aw6SoEn5OvnFbOmVztZtSRUaVOaCnBpdDWFBNJ6xBwsm7lMxvomMaOyNM3T/Bg=="

let txRep = try TxRep.toTxRep(transactionEnvelope:envelope)

print(txRep)

Result:

type: ENVELOPE_TYPE_TX_FEE_BUMP
feeBump.tx.feeSource: GBSH2PI5ILVBQYGYCK3QLYHBCJK6W34W23QCSFOOBWSBOXG2EHXOQIV3
feeBump.tx.fee: 400
feeBump.tx.innerTx.type: ENVELOPE_TYPE_TX
feeBump.tx.innerTx.tx.sourceAccount: GAY6KB56YBPGGJU54RRLHGO3GBHEBZYTDY5VCBXEP4NLAUZNRSO4SSMH
feeBump.tx.innerTx.tx.fee: 100
feeBump.tx.innerTx.tx.seqNum: 379748123410433
feeBump.tx.innerTx.tx.cond.type: PRECOND_TIME
feeBump.tx.innerTx.tx.cond.timeBounds.minTime: 0
feeBump.tx.innerTx.tx.cond.timeBounds.maxTime: 0
feeBump.tx.innerTx.tx.memo.type: MEMO_TEXT
feeBump.tx.innerTx.tx.memo.text: "hello"
feeBump.tx.innerTx.tx.operations.len: 1
feeBump.tx.innerTx.tx.operations[0].sourceAccount._present: false
feeBump.tx.innerTx.tx.operations[0].body.type: CREATE_ACCOUNT
feeBump.tx.innerTx.tx.operations[0].body.createAccountOp.destination: GBSH2PI5ILVBQYGYCK3QLYHBCJK6W34W23QCSFOOBWSBOXG2EHXOQIV3
feeBump.tx.innerTx.tx.operations[0].body.createAccountOp.startingBalance: 200000000
feeBump.tx.innerTx.tx.ext.v: 0
feeBump.tx.innerTx.signatures.len: 1
feeBump.tx.innerTx.signatures[0].hint: 2d8c9dc9
feeBump.tx.innerTx.signatures[0].signature: 5cd4e6a14321a6515335317f406b44ed9a6f1d0fb8c9f758a33ba3c35766f981ecad33bd2f87065983a363ff337219a45e5189ac76d67784d0df7f5a21d1b80a
feeBump.tx.ext.v: 0
feeBump.signatures.len: 1
feeBump.signatures[0].hint: da21eee8
feeBump.signatures[0].signature: 4622995b17f2f1938f463eb26514ca5c0a75030e92a049f93af9c56ce995ced66d49151a54e6829c1a5d0d6141349eb1070b26ee5331be898c68ec8d3374ff06

Txrep to transaction enevelope

let txRep = """
type: ENVELOPE_TYPE_TX
tx.sourceAccount: GAVRMS4QIOCC4QMOSKILOOOHCSO4FEKOXZPNLKFFN6W7SD2KUB7NBPLN
tx.fee: 100
tx.seqNum: 46489056724385793
tx.cond.type: PRECOND_TIME
tx.cond.timeBounds.minTime: 1535756672 (Sat Sep 1 01:04:32 CEST 2018)
tx.cond.timeBounds.maxTime: 1567292672 (Sun Sep 1 01:04:32 CEST 2019)
tx.memo.type: MEMO_TEXT
tx.memo.text: "Enjoy this transaction"
tx.operations.len: 1
tx.operations[0].sourceAccount._present: false
tx.operations[0].body.type: PAYMENT
tx.operations[0].body.paymentOp.destination: GBAF6NXN3DHSF357QBZLTBNWUTABKUODJXJYYE32ZDKA2QBM2H33IK6O
tx.operations[0].body.paymentOp.asset: USD:GAZFEVBSEGJJ63WPVVIWXLZLWN2JYZECECGT6GUNP4FJDVZVNXWQWMYI
tx.operations[0].body.paymentOp.amount: 400004000 (40.0004e7)
tx.ext.v: 0
signatures.len: 1
signatures[0].hint: 4aa07ed0 (GAVRMS4QIOCC4QMOSKILOOOHCSO4FEKOXZPNLKFFN6W7SD2KUB7NBPLN)
signatures[0].signature: defb4f1fad1c279327b55af184fdcddf73f4f7a8cb40e7e534a71d73a05124ba369db7a6d31b47cafd118592246a8575e6c249ab94ec3768dedb6292221ce50c
"""

let envelope = try TxRep.fromTxRep(txRep:txRep);

print(envelope)
// AAAAAgAAAAArFkuQQ4QuQY6SkLc5xxSdwpFOvl7VqKVvrfkPSqB+0AAAAGQApSmNAAAAAQAAAAEAAAAAW4nJgAAAAABdav0AAAAAAQAAABZFbmpveSB0aGlzIHRyYW5zYWN0aW9uAAAAAAABAAAAAAAAAAEAAAAAQF827djPIu+/gHK5hbakwBVRw03TjBN6yNQNQCzR97QAAAABVVNEAAAAAAAyUlQyIZKfbs+tUWuvK7N0nGSCII0/Go1/CpHXNW3tCwAAAAAX15OgAAAAAAAAAAFKoH7QAAAAQN77Tx+tHCeTJ7Va8YT9zd9z9Peoy0Dn5TSnHXOgUSS6Np23ptMbR8r9EYWSJGqFdebCSauU7Ddo3ttikiIc5Qw=

Working with accounts

Accounts are a fundamental building block of Stellar: they hold all your balances, allow you to send and receive payments, and let you place offers to buy and sell assets. Since pretty much everything on Stellar is in some way tied to an account, the first thing you generally need to do when you start developing is create one.

Before we get started with working with code, consider getting fammiliar with the Stellar developer documentation [https://developers.stellar.org/] and the Stellar Laboratory [https://laboratory.stellar.org/]. The lab allows you create accounts, fund accounts on the Stellar test network, build transactions, run any operation, and inspect responses from Horizon via the Endpoint Explorer.

Create a Keypair

Stellar uses public key cryptography to ensure that every transaction is secure: every Stellar account has a keypair consisting of a public key and a secret key. The public key (also called account id) is always safe to share — other people need it to identify your account and verify that you authorized a transaction. It’s like an email address. The secret key, however, is private information that proves you own — and gives you access to — your account. It’s like a password, and you should never share it with anyone.

Before creating an account, you need to generate your own keypair:

// create a completely new and unique pair of keys.
let keyPair = try! KeyPair.generateRandomKeyPair()

print("Account Id: " + keyPair.accountId) //public key as account id
// GCFXHS4GXL6BVUCXBWXGTITROWLVYXQKQLF4YH5O5JT3YZXCYPAFBJZB

print("Secret Seed: " + keyPair.secretSeed)
// SAV76USXIJOBMEQXPANUOQM6F5LIOTLPDIDVRJBFFE2MDJXG24TAPUU7

Create Account

A valid keypair, however, does not make an account: in order to prevent unused accounts from bloating the ledger, Stellar requires accounts to hold a minimum balance of 1 XLM before they actually exist. Until it gets a bit of funding, your keypair doesn’t warrant space on the ledger.

On the public network, where live users make live transactions, your next step would be to acquire XLM, which you can do by consulting Stellar’s lumen buying guide [https://www.stellar.org/lumens/exchanges]. Because this tutorial runs on the test network, you can get 10,000 test XLM from Friendbot, which is a friendly account funding tool.

To do that, send Friendbot the public key you created. It’ll create and fund a new account using that public key as the account ID.

// To create a test account, sdk.accounts.createTestAccount will send Friendbot the public key you created
sdk.accounts.createTestAccount(accountId: keyPair.accountId) { (response) -> (Void) in
 switch response {
 case .success(let details):
 print(details)
 case .failure(let error):
 print(error.localizedDescription)
 }
}

Now for the next step: getting the account’s details and checking its balance. Accounts can carry multiple balances — one for each type of currency they hold.

sdk.accounts.getAccountDetails(accountId: keyPair.accountId) { (response) -> (Void) in
 switch response {
 case .success(let accountDetails):

 // You can check the `balance`, `sequence`, `flags`, `signers`, `data` etc.

 for balance in accountDetails.balances {
 switch balance.assetType {
 case AssetTypeAsString.NATIVE:
 print("balance: \(balance.balance) XLM")
 default:
 print("balance: \(balance.balance) \(balance.assetCode!) issuer: \(balance.assetIssuer!)")
 }
 }
 case .failure(let error):
 print(error.localizedDescription)
 }
}

See also: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L106]

Now that you have an account you can create other accounts by using it. To do so, we send need to send a transaction to the Stellar Network containing a so called create account operation. From the Stellar developer site, you learn the basics about transactions and operations [https://developers.stellar.org/docs/fundamentals-and-concepts/stellar-data-structures/operations-and-transactions#transactions].

// build the operation
let createAccount = try CreateAccountOperation(sourceAccountId: nil,
 destinationAccountId: destinationAccountId,
 startBalance: 2.0)

// build the transaction
let transaction = try Transaction(sourceAccount: accountResponse,
 operations: [createAccount],
 memo: Memo.none)

// sign the transaction
try transaction.sign(keyPair: sourceAccountKeyPair, network: Network.testnet)

// submit the transaction
try sdk.transactions.submitTransaction(transaction: transaction) { (response) -> (Void) in
 switch response {
 case .success(_):
 //...
 case .failure(let error):
 // ...
 }
}

See also: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L43]

Update Account Details

You can update the details of your account, such as thresholds, flags, signers, home domain by using the set options operation [https://developers.stellar.org/docs/fundamentals-and-concepts/list-of-operations#set-options].

Following example shows how to change/set the home domain:

// replace the seed with your own.
let sourceAccountKeyPair = try KeyPair(secretSeed:"SDXEJKRXYLTV344KWCRJ4PXXXJVXKGK3UGESRWBWLDEWYO4S5OQ6VQ6I")

let homeDomain = "http://www.soneso.com"

// load the account from horizon to be sure that we have the current sequence number.
sdk.accounts.getAccountDetails(accountId: sourceAccountKeyPair.accountId) { (response) -> (Void) in
 switch response {
 case .success(let accountResponse):
 do {
 // build a set options operation, provide the new home domain.
 let setHomeDomainOperation = try SetOptionsOperation(homeDomain: homeDomain)
			
 // build the transaction that contains our operation.
 let transaction = try Transaction(sourceAccount: accountResponse,
 operations: [setHomeDomainOperation],
 memo: Memo.none)
			
			
 // sign the transaction.
 try transaction.sign(keyPair: sourceAccountKeyPair, network: Network.testnet)
			
 // submit the transaction to the stellar network.			
 try self.sdk.transactions.submitTransaction(transaction: transaction) { (response) -> (Void) in
 switch response {
 case .success(_):
 print("Success")
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Error:", horizonRequestError:error)
 }
 }
 } catch {
 // ...
 }
 case .failure(let error): // error loading account details
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Error:", horizonRequestError: error)
 }
}

Load, add, change and remove account data

Each account in Stellar network can contain multiple data entries with key/value pairs associated with it. The SDK can be used to retrieve value of each data key. The returned value is base64-encoded.

Following example shows how to retreive the value for a given key:

sdk.accounts.getDataForAccount(accountId: myAcountId, key:"soneso") { (response) -> (Void) in
 switch response {
 case .success(let dataForAccount):
 print("retrieved value: \(dataForAccount.value.base64Decoded())")
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"GDFA Test", horizonRequestError: error)
 }
}

You can add, update or detete key value pairs by using the manage data operation [https://developers.stellar.org/docs/fundamentals-and-concepts/list-of-operations#manage-data].

Following example shows how to add or change a key value pair:

// replace the seed with your own.
let sourceAccountKeyPair = try KeyPair(secretSeed:"SDXEJKRXYLTV344KWCRJ4PXXXJVXKGK3UGESRWBWLDEWYO4S5OQ6VQ6I")

let name = "soneso"
let value = "is super"

// load the account from horizon to be sure that we have the current sequence number.
sdk.accounts.getAccountDetails(accountId: sourceAccountKeyPair.accountId) { (response) -> (Void) in
 switch response {
 case .success(let accountResponse):
 do {
 // build a manage data operation, provide key and value
 let manageDataOperation = ManageDataOperation(name:name, data:value.data(using: .utf8))
			
 // build the transaction that contains our operation.
 let transaction = try Transaction(sourceAccount: accountResponse,
 operations: [manageDataOperation],
 memo: Memo.none,
 timeBounds:nil)
											
 // sign the transaction.								
 try transaction.sign(keyPair: sourceAccountKeyPair, network: Network.testnet)
			
 // submit the transaction to the stellar network.
 try self.sdk.transactions.submitTransaction(transaction: transaction) { (response) -> (Void) in
 switch response {
 case .success(_):
 print("Success")
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Error: ", horizonRequestError:error)
 }
 }
 } catch {
 // ...
 }
 case .failure(let error): // error loading account details
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Error", horizonRequestError: error)
 }
}

To delete an existing key value pair send nil as a value.

Advanced KeyPair creation

You can also create keipairs by using the SDK’s implementation of SEP-005 Key Derivation Methods for Stellar Accounts [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0005]. It allows you to deterministically create keypairs. To find out how that works, please consult the sdk documentation here.

Next chapter is Send and receive native Payments.

Working with Assets

Assets are the units that are traded on the Stellar Network.

Other than lumens (see below) all assets consist of an type, code, and issuer.

Lumens (XLM) are the native currency of the network. A lumen is the only asset type that can be used on the Stellar network that doesn’t require an issuer or a trustline.

To learn more about the concept of assets in the Stellar network, take a look at the Stellar assets concept guide [https://www.stellar.org/developers/guides/concepts/assets.html].

Get assets

This function calls the endpoint that represents all assets. It will give you all the assets in the system along with various statistics about each. It responds with a page of assets. Pages represent a subset of a larger collection of objects.

Parameters:

	assetCode: Optional. Code of the Asset to filter by.

	Parameter assetIssuer: Optional. Issuer of the Asset to filter by.

	cursor: Optional. A paging token, specifying where to start returning records from.

	order: Optional. The order in which to return rows, “asc” or “desc”, ordered by assetCode then by assetIssuer.

	limit: Optional. Maximum number of records to return. Default: 10

sdk.assets.getAssets(order:Order.descending, limit:5) { (response) -> (Void) in
 switch response {
 case .success(let pageResponse): // PageResponse<AssetResponse>
 for nextAssetResponse in pageResponse.records {
 print("Asset code: \(nextAssetResponse.assetCode!)")
 print("Asset issuer: \(nextAssetResponse.assetIssuer!)")
 }
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Get assets", horizonRequestError: error)
 }
}

You can request the next or previous page like this:

pageResponse.getNextPage(){ (response) -> (Void) in
 switch response {
 case .success(let nextPageResponse):
 for assetResponse in nextPageResponse.records {
 print("Asset code: \(assetResponse.assetCode!)")
 print("Asset issuer: \(assetResponse.assetIssuer!)")
 }
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"get next page", horizonRequestError: error)
 }
}

Trusting an asset issuer

Accounts must explicitly trust an issuing account before they’re able to hold the issuer’s asset. To trust an issuing account, you create a trustline. Trustlines are entries that persist in the Stellar ledger. They track the limit for which your account trusts the issuing account and the amount of credit from the issuing account that your account currently holds.

If you are not familiar with trustlines you can find more information in the Stellar Guide [https://www.stellar.org/developers/guides/concepts/assets.html#trustlines].

Following example shows how to build such a trustline:

// asset issuer
let issuingAccountKeyPair = try KeyPair(accountId: "GCXIZK3YMSKES64ATQWMQN5CX73EWHRHUSEZXIMHP5GYHXL5LNGCOGXU")

// asset
let IOM = ChangeTrustAsset(type: AssetType.ASSET_TYPE_CREDIT_ALPHANUM4, code: "IOM", issuer: issuingAccountKeyPair)

// our account that wants to hold "IOM" the sdk currency. Please use your own account.
let trustingAccountKeyPair = try KeyPair(secretSeed: "SA3XXXUM2YJ")

// load our accounts details to be sure that we have the current sequence number.
sdk.accounts.getAccountDetails(accountId: trustingAccountKeyPair.accountId) { (response) -> (Void) in
 switch response {
 case .success(let accountResponse):
 do {
 // build a change trust operation.
 let changeTrustOp = ChangeTrustOperation(asset:IOM!, limit: 100000000)

 // build the transaction containing our operation
 let transaction = try Transaction(sourceAccount: accountResponse,
 operations: [changeTrustOp],
 memo: Memo.none,
 timeBounds:nil)
		// sign the transaction
 try transaction.sign(keyPair: trustingAccountKeyPair, network: Network.testnet)

 // sublit the transaction
 try self.sdk.transactions.submitTransaction(transaction: transaction) { (response) -> (Void) in
 switch response {
 case .success(_):
 print("Success")
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Trust error", horizonRequestError:error)
 }
 }
 } catch {
 //...
 }
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Get account error", horizonRequestError:error)
 }
}

Issue an asset

There is no dedicated operation to create an asset on Stellar. Instead, assets are created with a payment operation: an issuing account makes a payment using the asset it’s issuing, and that payment creates the asset on the network.

The public key of the issuing account is linked on the ledger to the asset. Responsibility for and control over an asset resides with the issuing account. Since settings are stored at the account level on the ledger, the issuing account is where you use set_options operations to link to meta-information about an asset and set authorization flags.

In the chapter update account details we described how you can change the details of, for example an issuing account.

You can read more about issuing assets on the official Stellar developer site [https://developers.stellar.org/docs/category/issue-assets].

Issue an asset tutorial

This tutorial is based on the example from the official Stellar developer site which can be found here [https://developers.stellar.org/docs/issuing-assets/how-to-issue-an-asset].

1. Create issuing account and an object to represent the new asset

let issuerKeypair = try! KeyPair.generateRandomKeyPair()
let astroDollar = Asset(type: AssetType.ASSET_TYPE_CREDIT_ALPHANUM12, code: "AstroDollar", issuer: issuerKeypair)!;

2. Create distribution account

let distributionKeypair = try! KeyPair.generateRandomKeyPair()

// Alternative: This loads a keypair from a secret key you already have
// let distributionKeypair = try KeyPair(secretSeed: "SCZANGBA5YHTNYVVV4C3U252E2B6P6F5T3U6MM63WBSBZATAQI3EBTQ4");

3. Establish trustline between the two

// build the change trust operation
let changeTrustAsset = ChangeTrustAsset(type: astroDollar.type, code: astroDollar.code, issuer: astroDollar.issuer)!
let changeTrustOperation = ChangeTrustOperation(sourceAccountId: distributionKeypair.accountId,
 asset: changeTrustAsset,
 limit: 1000)

// build the transaction
let transaction = try Transaction(sourceAccount: accountResponse,
 operations: [changeTrustOperation],
 memo: Memo.none)

4. Make a payment from issuing to distribution account, issuing the asset

//build the payment operation
let paymentOperation = try PaymentOperation(sourceAccountId: issuerKeypair.accountId,
 destinationAccountId: distributionKeypair.accountId,
 asset: astroDollar,
 amount: 1000)

// build the transaction
let transaction = try Transaction(sourceAccount: accountResponse,
 operations: [paymentOperation],
 memo: Memo.none)

You can find the full working code as a testcase here [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/IssueAssetTest.swift].

Publish Information About An Asset

How to publish information about an asset is described on the official Stellar developer site here [https://developers.stellar.org/docs/issuing-assets/publishing-asset-info].

This SDK supports the parsing of Stellar Info Files as described in SEP-0001 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0001]. The description on how to use the integrated parser of the SDK can be found here.

Next chapter is Querying data.

Claimable Balances

Claimable balances are used to split a payment into two parts.

Part 1: sending account creates a payment, or ClaimableBalanceEntry, using the Create Claimable Balance operation
Part 2: destination account(s), or claimant(s), accepts the ClaimableBalanceEntry using the Claim Claimable Balance operation

Claimable balances allow an account to send a payment to another account that is not necessarily prepared to receive the payment. They can be used when you send a non-native asset to an account that has not yet established a trustline, which can be useful for anchors onboarding new users. A trustline must be established by the claimant to the asset before it can claim the claimable balance, otherwise, the claim will result in an op_no_trust error.

Claimable Balances are described in more detail in the Claimable Balances [https://developers.stellar.org/docs/encyclopedia/claimable-balances] chapter of the Stellar developer site.

Source code examples of using Claimable Balances with the SDK can be found in the Operations test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/operations/OperationsRemoteTestCase.swift] and in the Clawback test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/payments/ClawbackTestCase.swift] of the SDK.

Next chapter is Sponsoring Future reserves

doc

TODO

Soneso iOS Stellar SDK Overview

The iOS Stellar SDK by Soneso facilitates integration with the Stellar Horizon API server and submission of Stellar transactions from your iOS or macOS app.

It has three main uses:

	Querying the Stellar Blockchain by using Horizon

	Building, signing, and submitting transactions to the Stellar Network.

	Interacting with the Stellar Ecosystem (e.g. Anchors), by using Stellar Ecosystem Proposals [https://github.com/stellar/stellar-protocol/tree/master/ecosystem].

Querying Horizon

The SDK gives you access to all the endpoints exposed by Horizon [https://developers.stellar.org/api]. This will allow you to query the data from the Stellar Blockchain.

Initializing the SDK

First, the StellarSDK [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/StellarSDK.swift] class has to be initialized. The constructor accepts a Horizon URL as a parameter. If the StellarSDK class is initialized without a specific Horizon URL it will connect to the testnet instance of Horizon provided by Stellar.org.

let sdk = StellarSDK()

If you want to connect to the main public net, you can use the following horzion url: https://horizon.stellar.org:

let sdk = StellarSDK(withHorizonUrl: "https://horizon.stellar.org")

Using the SDK services

The StellarSDK [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/StellarSDK.swift] class provides access to the SDK services. Each service represents a main request type such as: accounts, effects, transactions and so on.

For example, to query the details of an existing account you can use the accounts service implemented in the AccountService [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/AccountService.swift] class of the SDK. It provides the function getAccountDetails that can be used as in following example:

let sdk = StellarSDK() // connect to testnet

sdk.accounts.getAccountDetails(accountId: "GAWE7LGEFNRN3QZL5ILVLYKKKGGVYCXXDCIBUJ3RVOC2ZWW6WLGK76TJ") { (response) -> (Void) in
 switch response {
 case .success(let accountResponse):
 print("Account ID: \(accountResponse.accountId)")
 print("Account Sequence: \(accountResponse.sequenceNumber)")
 for balance in accountResponse.balances {
 if balance.assetType == AssetTypeAsString.NATIVE {
 print("Account balance: \(balance.balance) XLM")
 } else {
 print("Account balance: \(balance.balance) \(balance.assetCode!) of issuer: \(balance.assetIssuer!)")
 }
 }
 case .failure(let error):
 print(error.localizedDescription)
 }
 }
}

As you can see, you first need an account id to be able to query the account details. The account id provided in the example above may not represent an existing account at the time you are trying to test this. It is so, because the testnet is reset every 3 month. We recommend you to generate your own account first, by using a very helpful tool named Stellar Laboratory [https://laboratory.stellar.org/#account-creator?network=test].

To do so, first generate a new keypair, which represents the public key/account id and secret seed of a new account to be created (do not forget to save them somewhere). Next, fund the account on the testnet by using the “freindbot” provided by Stellar Laboratory.

Now that you have your new account on the test network, you can query it’s details. First, give it a try in Stellar Laboratory. Navigate to Explore Endpoints - Accounts - Single Account, paste your new account id there and request the details. In the json response that you receive, you can see all details of the account. Check the Stellar API Docs [https://developers.stellar.org/api/resources/accounts/] to learn more about account details.

Next, you can try to query the details by using the sdk as shown in the example above. First, replace the account id in the code with your own and then execute the code.

The getAccountDetails function replies by using a completion handler. In case of success, you receive an AccountResponse [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/responses/account_responses/AccountResponse.swift] object, holding the account details of the queried account. In the example above, we print it’s account id, it’s sequence number and the balances it possesses.

As mentioned above, the sdk provides many services similar to the account service that allow you to query the data from the Stellar Blockchain. At the time of writing, following services are available:

	Account Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/AccountService.swift]

	Assets Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/AssetsService.swift]

	Payments Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/PaymentsService.swift]

	Transactions Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/TransactionsService.swift]

	Ledgers Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/LedgersService.swift]

	Operations Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/OperationsService.swift]

	Trades Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/TradesService.swift]

	Offers Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/OffersService.swift]

	Fee Stats Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/FeeStatsService.swift]

	Effects Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/EffectsService.swift]

	Trade Aggregations Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/TradeAggregationsService.swift]

	Orderbooks Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/OrderbookService.swift]

	Paymnent Paths Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/PaymentPathsService.swift]

	Claimable Balances Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/ClaimableBalancesService.swift]

	Liquidity Pools Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/LiquidityPoolsService.swift]

Building and submitting transactions

Actions that change things in Stellar, like sending payments, changing your account, or making offers to trade various kinds of currencies, are called operations. To actually perform an operation, you create a transaction, which is just a group of operations accompanied by some extra information, like what account is making the transaction and a cryptographic signature to verify that the transaction is authentic. You can use the Transaction [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/sdk/Transaction.swift] class to create the requests to send to Horizon.

Stellar stores and communicates transaction data in a binary format called XDR. Luckily, the Stellar SDK provide tools that take care of all that.

Here’s an example how you might send 10 lumens to another account:

let sourceAccountKeyPair = try! KeyPair(secretSeed:"SA3QF6XW433CBDLUEY5ZAMHYJLJNHBBOPASLJLO4QKH75HRRXZ3UM2YJ")
let destinationAccountId = "GCKECJ5DYFZUX6DMTNJFHO2M4QKTUO5OS5JZ4EIIS7C3VTLIGXNGRTRC"

// First, check to make sure that the destination account exists.
// You could skip this, but if the account does not exist, you will be charged
// the transaction fee when the transaction fails.
sdk.accounts.getAccountDetails(accountId: sourceAccountKeyPair.accountId) { (response) -> (Void) in
 switch response {
 case .success(let accountResponse): // account exists
 do {
 // create the payment operation
 let paymentOperation = try PaymentOperation(sourceAccountId: sourceAccountKeyPair.accountId,
 destinationAccountId: destinationAccountId,
 asset: Asset(type: AssetType.ASSET_TYPE_NATIVE)!,
 amount: 10.0)

 // create the transaction containing the payment operation
 let transaction = try Transaction(sourceAccount: accountResponse,
 operations: [paymentOperation],
 memo: Memo.none)

 // Sign the transaction to prove you are actually the person sending it.
 try transaction.sign(keyPair: sourceAccountKeyPair, network: Network.testnet)

 // And finally, send it off to Stellar!
 try self.sdk.transactions.submitTransaction(transaction: transaction) { (response) -> (Void) in
 switch response {
 case .success(_):
 print("Transaction successfully sent!")
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag: "Sample", horizonRequestError:error)
 case .destinationRequiresMemo(let destinationAccountId):
 print("Destination account \(destinationAccountId) requires memo.")
 }
 }
 } catch {
 // ...
 }
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Sample", horizonRequestError:error)

 }
}

Streaming mode

The SDK provides streaming support for all Horizon endpoints that can be used in streaming mode.

It is possible to use the streaming mode for example to listen for new payments as transactions happen in the Stellar network. If called in streaming mode Horizon will start at the earliest known payment unless a cursor is set. In that case it will start from the cursor. You can also set cursor value to “now” to only stream effects created since your request time. Learn more about it in the Streaming chapter of this documentation.

Next chapter is Working with accounts.

Path Payments

In a path payment, the asset received differs from the asset sent. Rather than the operation transferring assets directly from one account to another, path payments cross through the SDEX and/or liquidity pools before arriving at the destination account. For the path payment to succeed, there has to be a DEX offer or liquidity pool exchange path in existence. It can sometimes take several hops of conversion to succeed.

For example:

Account A sells XLM → [buy XLM / sell ETH → buy ETH / sell BTC → buy BTC / sell USDC] → Account B receives USDC

It is possible for path payments to fail if there are no viable exchange paths.

Path payments use the Path Payment Strict Send or Path Payment Strict Receive operations. Path Payment Strict Send allows a user to specify the amount of the asset to send. The amount received will vary based on offers in the order books and/or liquidity pools. Path Payment allows a user to specify the amount of the asset received. The amount sent will vary based on the offers in the order books/liquidity pools.

Source code examples can be found in the path payment test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/payment_paths/PaymentPathsTestCase.swift]

Next chapter is Trading

Send and receive payments

Most of the time, you’ll be sending money to someone else who has their own account. For this tutorial, however, you’ll need a second account to transact with. So before proceeding, follow the steps outlined in Create an Account to make two accounts: one for sending and one for receiving.

About operations and transactions

Actions that do things on Stellar — like sending payments or making buy or sell offers — are called operations. To submit an operation to the network, you bundle it into a transaction, which is a group of anywhere from 1 to 100 operations accompanied by some extra information, like which account is making the transaction and a cryptographic signature to verify that the transaction is authentic.

Transactions are atomic, meaning that if any operation in a transaction fails, they all fail. Let’s say you have 100 lumens and you make two payment operations of 60 lumens each. If you make two transactions (each with one operation), the first will succeed and the second will fail because you don’t have enough lumens. You’ll be left with 40 lumens. However, if you group the two payments into a single transaction, they will both fail and you’ll be left with the full 100 lumens still in your account.

Every transaction also incurs a small fee. Like the minimum balance on accounts, this fee deters spam and prevents people from overloading the system. This base fee is very small — 100 stroops per operation where a stroop equals 1 * 10 ^-7 XLM — and it’s charged for each operation in a transaction. A transaction with two operations, for instance, would cost 200 stroops.

Send a payment

Stellar stores and communicates transaction data in a binary format called XDR. Luckily, the Stellar SDKs provide tools that take care of all that. Here’s how you might send 10.5 lumens to another account:

self.sdk.accounts.getAccountDetails(accountId: sourceAccountKeyPair.accountId) { (response) -> (Void) in
 switch response {
 case .success(let accountResponse):
 do {
 // build the payment operation
 let paymentOperation = try PaymentOperation(sourceAccountId: sourceAccountKeyPair.accountId,
 destinationAccountId: destinationAccountId,
 asset: Asset(type: AssetType.ASSET_TYPE_NATIVE)!,
 amount: 10.5)

 // build the transaction containing our payment operation.
 let transaction = try Transaction(sourceAccount: accountResponse,
 operations: [paymentOperation],
 memo: Memo.none)
 // sign the transaction
 try transaction.sign(keyPair: sourceAccountKeyPair, network: Network.testnet)

 // submit the transaction.
 try self.sdk.transactions.submitTransaction(transaction: transaction) { (response) -> (Void) in
 switch response {
 case .success(_):
 print("Success")
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Test", horizonRequestError:error)
 case .destinationRequiresMemo(let destinationAccountId):
 print("Destination account \(destinationAccountId) requires memo.")
 }
 }
 } catch {
 //...
 }
 case .failure(let error):
 StellarSDKLog.printHorizonRequestErrorMessage(tag:"Test", horizonRequestError:error)
 }
}

See also: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L299]

Hint: Sometimes it makes sense to first check if the destination account exists before sending the payment. If the account does not exist, you will be charged the transaction fee when the transaction fails. To check if the account exists you can just try to load its details with: swift sdk.accounts.getAccountDetails

Receive Payments

You don’t actually need to do anything to receive payments into a Stellar account — if a payer makes a successful transaction to send assets to you, those assets will automatically be added to your account.

However, you’ll want to know that someone has actually paid you. If you are an automated rental car with a Stellar account, you’ll probably want to verify that the customer in your front seat actually paid before that person can turn on your engine.

A simple program that watches the network for payments and prints each one might look like:

First define your stream item somewhere to be able to hold the reference:

var streamItem:OperationsStreamItem? = nil

then create, assign and use it:

streamItem = sdk.payments.stream(for: .paymentsForAccount(account: destinationAccountId, cursor: nil))

streamItem.onReceive { (response) -> (Void) in
 switch response {
 case .open:
 break
 case .response(let id, let operationResponse):
 if let paymentResponse = operationResponse as? PaymentOperationResponse {
 switch paymentResponse.assetType {
 case AssetTypeAsString.NATIVE:
 print("Payment of \(paymentResponse.amount) XLM from \(paymentResponse.sourceAccount) received - id \(id)")
 default:
 print("Payment of \(paymentResponse.amount) \(paymentResponse.assetCode!) from \(paymentResponse.sourceAccount) received - id \(id)")
 }
 }
 case .error(let err):
 print(err?.localizedDescription ?? "Error")
 }
}

later you can close the stream item:

streamItem.close()

See also: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L222]

Check payments

You can also “manually” check the most recent payments by:

sdk.payments.getPayments(order:Order.descending, limit:10) { response in
 switch response {
 case .success(let paymentsResponse):
 for payment in paymentsResponse.records {
 if let nextPayment = payment as? PaymentOperationResponse {
 if (nextPayment.assetType == AssetTypeAsString.NATIVE) {
 print("received: \(nextPayment.amount) lumen")
 } else {
 print("received: \(nextPayment.amount) \(nextPayment.assetCode!)")
 }
 print("from: \(nextPayment.from)")
 }
 else if let nextPayment = payment as? AccountCreatedOperationResponse {
 //...
 }
 }
 case .failure(let error):
 print(error.localizedDescription)
 }
}

See also: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L158]

You can use the parameters:limit, order, and cursor to customize the query. You can also get most recent payments for accounts, ledgers and transactions.

For example get payments for account:

sdk.payments.getPayments(forAccount:keyPair.accountId, order:Order.descending, limit:10)

See also: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L188]

Next chapter is Working with Assets.

Querying data

This SDK supports all endpoints exposed by Horizon [https://developers.stellar.org/api/introduction/].

The Horizon API serves as a bridge between apps and Stellar Core. Projects like wallets, decentralized exchanges, and asset issuers use Horizon to submit transactions, query an account balance, or stream events like transactions to an account.

Querying Horizon is one of the main uses of this SDK. The SDK takes care of the underlaying communication with Horizon and converts the received data into easy-to-use response objects.

Resources

Data on the Stellar ledger is organized according to resources. Each resource has several different endpoints provided by Horizon.

Resource types are: Ledgers, Transactions, Operations, Effects, Accounts, Offers, Claimable Balances, Trades, Assets, Liquidity Pools.

The SDK covers all endpoints by providing so called services.

Using the SDK services

The StellarSDK [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/StellarSDK.swift] class provides access to the SDK services. Each service represents a main request type such as: accounts, effects, transactions and so on.

For example, to query the details of an existing account you can use the accounts service implemented in the AccountService [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/AccountService.swift] class of the SDK. It provides the function getAccountDetails that can be used as in following example:

let sdk = StellarSDK() // connect to testnet

sdk.accounts.getAccountDetails(accountId: "GAWE7LGEFNRN3QZL5ILVLYKKKGGVYCXXDCIBUJ3RVOC2ZWW6WLGK76TJ") { (response) -> (Void) in
 switch response {
 case .success(let accountResponse):
 print("Account ID: \(accountResponse.accountId)")
 print("Account Sequence: \(accountResponse.sequenceNumber)")
 for balance in accountResponse.balances {
 if balance.assetType == AssetTypeAsString.NATIVE {
 print("Account balance: \(balance.balance) XLM")
 } else {
 print("Account balance: \(balance.balance) \(balance.assetCode!) of issuer: \(balance.assetIssuer!)")
 }
 }
 case .failure(let error):
 print(error.localizedDescription)
 }
 }
}

The getAccountDetails function replies by using a completion handler. In case of success, you receive an AccountResponse [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/responses/account_responses/AccountResponse.swift] object, holding the account details of the queried account. In the example above, we print it’s account id, its sequence number and the balances it possesses.

As mentioned above, the sdk provides many services similar to the account service that allow you to query the data from the Stellar Blockchain. At the time of writing, following services are available:

	Account Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/AccountService.swift]

	Assets Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/AssetsService.swift]

	Payments Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/PaymentsService.swift]

	Transactions Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/TransactionsService.swift]

	Ledgers Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/LedgersService.swift]

	Operations Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/OperationsService.swift]

	Trades Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/TradesService.swift]

	Offers Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/OffersService.swift]

	Fee Stats Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/FeeStatsService.swift]

	Effects Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/EffectsService.swift]

	Trade Aggregations Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/TradeAggregationsService.swift]

	Orderbooks Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/OrderbookService.swift]

	Paymnent Paths Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/PaymentPathsService.swift]

	Claimable Balances Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/ClaimableBalancesService.swift]

	Liquidity Pools Service [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/service/LiquidityPoolsService.swift]

Horizon also provides a streaming mechanism for receiving events in near real time. Read about how to use the SDK for streaming in the next chapter.

Stellar Ecosystem Proposals

Each SEP is a distinct blueprint meant to help users build a product or service that interoperates with other products and services on the Stellar network. On the Stellar developer site they are described here [https://developers.stellar.org/docs/fundamentals-and-concepts/stellar-ecosystem-proposals].

This SDK provides implementations of following SEPs:

	SEP-0001 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0001] - Stellar Info File (Toml)

	SEP-0002 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0002] - Federation protocol

	SEP-0005 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0005] - Key Derivation Methods for Stellar Accounts

	SEP-0006 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0006] - Anchor/Client interoperability

	SEP-0007 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0007] - URI Scheme to facilitate delegated signing

	SEP-0009 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0009] - Standard KYC / AML fields

	SEP-0010 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0010] - Stellar Web Authentication

	SEP-0011 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0011] - Txrep

	SEP-0012 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0012] - Anchor/Client customer info transfer

Stellar Info File - SEP-0001

The stellar info file is used to provide a common place where the Internet can find information about a domain’s Stellar integration. Any website can publish Stellar network information. They can announce their validation key, their federation server, peers they are running, their quorum set, if they are an anchor, etc.

The Stellar info file is a text file in the TOML format [https://github.com/toml-lang/toml]. The content is defined in SEp-0001 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0001]

Given the domain “DOMAIN”, the Stellar Info File will be searched for at the following location:

https://DOMAIN/.well-known/stellar.toml

This SDK provides tools to load Stellar Info Files and read data from them.

Getting a StellarToml object and read data

From domain:

try? StellarToml.from(domain: "soneso.com") { (result) -> (Void) in
 switch result {
 case .success(response: let stellarToml):

 // ex. read federation server url
 if let federationServer = stellarToml.accountInformation.federationServer {
 print(federationServer)
 } else {
 print("Toml contains no federation server url")
 }

 // read other data
 // stellarToml.accountInformation...
 // stellarToml.issuerDocumentation ...
 // stellarToml.pointsOfContact...
 // stellarToml.currenciesDocumentation...
 // stellarToml.validatorInformation...

 case .failure(let error):
 switch error {
 case .invalidDomain:
 // do something
 case .invalidToml:
 // do something
 }
 }
}

From string:

let stellarToml = try? StellarToml(fromString: tomlSample)

if let federationServer = stellarToml.accountInformation.federationServer {
 print(federationServer)
} else {
 print("Toml contains no federation server url")
}

// read other data
// stellarToml.accountInformation...
// stellarToml.issuerDocumentation ...
// stellarToml.pointsOfContact...
// stellarToml.currenciesDocumentation...
// stellarToml.validatorInformation...

You can find more source code examples regarding SEP-0001 in the Toml test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/toml/TomlTestCase.swift] of the SDK.

Federation Protocol - SEP-0002

Using a federation server

The Stellar federation protocol defined in SEP-002 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0002] maps Stellar addresses to more information about a given user. It’s a way for Stellar client software to resolve email-like addresses such as:

name*yourdomain.com

into account IDs like:

GCCVPYFOHY7ZB7557JKENAX62LUAPLMGIWNZJAFV2MITK6T32V37KEJU

Stellar addresses provide an easy way for users to share payment details by using a syntax that interoperates across different domains and providers.

Get federation server address for a domain

Get the federation of your domain:

Federation.forDomain(domain: "https://YOUR_DOMAIN") { (response) -> (Void) in
 switch response {
 case .success(let federation):
 //use the federation object to map your infos
 case .failure(_):
 //something went wrong
 }
}

Resolve a federation address to an account id

Resolve your addresses:

let federation = Federation(federationAddress: "https://YOUR_FEDERATION_SERVER")
federation.resolve(address: "bob*YOUR_DOMAIN") { (response) -> (Void) in
 switch response {
 case .success(let federationResponse):
 if let accountId = federationResponse.accountId {
 // use the account id
 } else {
 // there is no account id corresponding to the given address
 }
 case .failure(_):
 // something went wrong
 }
}

You can find more source code examples regarding SEP-0002 in the Federation test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/federation/FederationTestCase.swift] of the SDK.

Key Derivation Methods for Stellar Accounts - SEP-0005

The Stellar Ecosystem Proposal SEP-005 Key Derivation Methods for Stellar Accounts [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0005] describes methods for key derivation for Stellar. This improves key storage and moving keys between wallets and apps.

Generate mnemonic

let mnemonic = Wallet.generate24WordMnemonic()
print("generated 24 words mnemonic: \(mnemonic)")
// bench hurt jump file august wise shallow faculty impulse spring exact slush thunder author capable act festival slice deposit sauce coconut afford frown better

Generate key pairs

let keyPair0 = try! Wallet.createKeyPair(mnemonic: mnemonic, passphrase: nil, index: 0)
let keyPair1 = try! Wallet.createKeyPair(mnemonic: mnemonic, passphrase: nil, index: 1)

print("key pair 0 accountId: \(keyPair0.accountId)")
// key pair 0 accountId: GC3MMSXBWHL6CPOAVERSJITX7BH76YU252WGLUOM5CJX3E7UCYZBTPJQ

print("key pair 0 secretSeed: \(keyPair0.secretSeed!)")
// key pair 0 secretSeed: SAEWIVK3VLNEJ3WEJRZXQGDAS5NVG2BYSYDFRSH4GKVTS5RXNVED5AX7

Generate key pairs with passphrase

let keyPair0 = try! Wallet.createKeyPair(mnemonic: mnemonic, passphrase: "p4ssphr4se", index: 0)
let keyPair1 = try! Wallet.createKeyPair(mnemonic: mnemonic, passphrase: "p4ssphr4se", index: 0)

BIP and master key generation

let bip39Seed = Mnemonic.createSeed(mnemonic: mnemonic)

let masterPrivateKey = Ed25519Derivation(seed: bip39Seed)
let purpose = masterPrivateKey.derived(at: 44)
let coinType = purpose.derived(at: 148)

let account0 = coinType.derived(at: 0)
let keyPair0 = try! KeyPair.init(seed: Seed(bytes: account0.raw.bytes))

let account1 = coinType.derived(at: 1)
let keyPair1 = try! KeyPair.init(seed: Seed(bytes: account1.raw.bytes))

You can find more source code examples regarding SEP-0005 in the Mnemonic generation test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/wallet/MnemonicGeneration.swift] and the Mnemonic keypair generation test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/wallet/MnemonicKeyPairGeneration.swift] of the SDK.

Anchor Client Interoperability - SEP-0006

The Stellar Ecosystem Proposal SEP-0006 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0006] defines the standard way for anchors and wallets to interact on behalf of users. This improves user experience by allowing wallets and other clients to interact with anchors directly without the user needing to leave the wallet to go to the anchor’s site.

This protocol requires anchors to implement endpoints on their TRANSFER_SERVER. An anchor must define the location of their transfer server in their stellar.toml. This is how a wallet knows where to find the anchor’s server.

Example: TRANSFER_SERVER=”https://api.example.com”

Get the TransferServerService for a domain

Get the TransferServerService for your domain:

TransferServerService.forDomain(domain: "https://YOUR_DOMAIN") { (response) -> (Void) in
 switch response {
 case .success(let transferServerService):
	 // use the transferServerService object to call other operations
 case .failure(_):
	 // something went wrong
 }
}

Deposit external assets with an anchor

A deposit is when a user sends an external token (BTC via Bitcoin, USD via bank transfer, etc…) to an address held by an anchor. In turn, the anchor sends an equal amount of tokens on the Stellar network (minus fees) to the user’s Stellar account.
The deposit endpoint allows a wallet to get deposit information from an anchor, so a user has all the information needed to initiate a deposit. It also lets the anchor specify additional information (if desired) that the user must submit via the /customer endpoint to be able to deposit.

let request = DepositRequest(assetCode: "BTC", account: "GAK7I2E6PVBFF27NU5MRY6UXGDWAJT4PF2AH46NUWLFJFFVLOZIEIO4Q")
transferServerService.deposit(request: request) { (response) -> (Void) in
 switch response {
 case .success(let response):
	 // deposit was sent with success
 case .failure(_):
	 // something went wrong
 }
}

Withdraw assets from an anchor

This operation allows a user to redeem an asset currently on the Stellar network for the real asset (BTC, USD, stock, etc…) via the anchor of the Stellar asset.
The withdraw endpoint allows a wallet to get withdrawal information from an anchor, so a user has all the information needed to initiate a withdrawal. It also lets the anchor specify additional information (if desired) that the user must submit via the /customer endpoint to be able to withdraw.

let request = WithdrawRequest(type: "crypto", assetCode: "BTC", dest: "GAK7I2E6PVBFF27NU5MRY6UXGDWAJT4PF2AH46NUWLFJFFVLOZIEIO4Q")
transferServerService.withdraw(request: request) { (response) -> (Void) in
	switch response {
	case .success(let info):
		// the withdraw operation completed successfully
	case .failure(_):
	 // something went wrong
	}
}

Communicate deposit & withdrawal fee structure for an anchor to the user

Allows an anchor to communicate basic info about what their TRANSFER_SERVER supports to wallets and clients.

transferServerService.info { (response) -> (Void) in
	switch response {
	case .success(let info):
		// info returned successfully
	case .failure(_):
		// something went wrong
	}
}

Using the transaction history endpoint

The transaction history endpoint helps anchors enable a better experience for users using an external wallet. With it, wallets can display the status of deposits and withdrawals while they process and a history of past transactions with the anchor. It’s only for transactions that are deposits to or withdrawals from the anchor.

let request = AnchorTransactionsRequest(assetCode: "BTC", account: "GAK7I2E6PVBFF27NU5MRY6UXGDWAJT4PF2AH46NUWLFJFFVLOZIEIO4Q")
transferServerService.getTransactions(request: request) { (response) -> (Void) in
	switch response {
	case .success(let transactions):
		// the past transactions returned successfully
	case .failure(_):
		// something went wrong
	}
}

Delete all KYC info about customer

Delete all personal information that the anchor has stored about a given customer. [account] is the Stellar account ID (G…) of the customer to delete. This request must be authenticated (via SEP-10) as coming from the owner of the account that will be deleted.

transferServerService.deleteCustomerInfo(account: "GAK7I2E6PVBFF27NU5MRY6UXGDWAJT4PF2AH46NUWLFJFFVLOZIEIO4Q") { (response) -> (Void) in
	switch response {
	case .success:
	 // all information for the given account was deleted successfully
	case .failure(_):
	 // something went wrong
	}
}

You can find more source code examples regarding SEP-0006 in the Transfer server test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/transfer_server_protocol/TransferServerTestCase.swift] of the SDK.

URI Scheme to facilitate delegated signing SEP-0007

The Stellar Ecosystem Proposal SEP-0007 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0007] introduces a URI Scheme that can be used to generate a URI that will serve as a request to sign a transaction. The URI (request) will typically be signed by the user’s trusted wallet where she stores her secret key(s).

Generate a URI for sign transaction.

Generate a URI that will serve as a request to sign a transaction. The URI (request) will typically be signed by the user’s trusted wallet where he stores his secret key(s).

// create the payment operation
let paymentOperation = try! PaymentOperation(sourceAccountId: sourceAccountId,
 destinationAccountId: destinationAccountId,
 asset: Asset(type: AssetType.ASSET_TYPE_NATIVE)!,
 amount: 1.5)

// create the transaction containing the payment operation
let transaction = try! Transaction(sourceAccount: accountResponse,
 operations: [paymentOperation],
 memo: Memo.none)
// create the URIScheme object
let uriSchemeBuilder = URIScheme()

// get the URI with your transactionXDR
// more params can be added to the url, check method definition
let uriScheme = uriSchemeBuilder.getSignTransactionURI(transactionXDR: transaction.transactionXDR, callBack: "your_callback_api.com")
print (uriScheme);

See also: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L372]

Generate a URI for pay operation

Generate a URI that will serve as a request to pay a specific address with a specific asset, regardless of the source asset used by the payer.

let uriSchemeBuilder = URIScheme()
// more params can be added to the url, check method definition
let uriScheme = uriSchemeBuilder.getPayOperationURI(destination: "GAK7I2E6PVBFF27NU5MRY6UXGDWAJT4PF2AH46NUWLFJFFVLOZIEIO4Q", amount: 100, assetCode: "BTC", assetIssuer:"GC2PIUYXSD23UVLR5LZJPUMDREQ3VTM23XVMERNCHBRTRVFKWJUSRON5", callBack: "your_callback_api.com")
print (uriScheme);

See also: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L424]

Sign a transaction from a given URI and send it to the network

Signs a transaction from a URI and sends it to the callback url if present or to the stellar network otherwise.

uriBuilder.signTransaction(forURL: uri, signerKeyPair: keyPair, transactionConfirmation: { (transaction) -> (Bool) in
 // here the transaction from the uri can be checked and confirmed if the signing should continue
 return true
}) { (response) -> (Void) in
 switch response {
 case .success:
 // the transaction was successfully signed
 case .failure(error: let error):
 // the transaction wasn't valid or it didn't pass the confirmation
}

You can find more source code examples regarding SEP-0007 in the Uri scheme test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/uri_scheme/URISchemeTestCase.swift] of the SDK.

Standard KYC / AML fields - SEP-0009

This SEP defines a list of standard KYC and AML fields for use in Stellar ecosystem protocols. Issuers, banks, and other entities on Stellar should use these fields when sending or requesting KYC / AML information with other parties on Stellar. See SEP-0009 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0009] for more details.

In this SDK they are implemented in the are implemented here [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdk/transfer_server_protocol/requests/PutCustomerInfoRequest.swift].

Stellar Web Authentication - SEP-0010

This SEP defines the standard way for clients such as wallets or exchanges to create authenticated web sessions on behalf of a user who holds a Stellar account. A wallet may want to authenticate with any web service which requires a Stellar account ownership verification, for example, to upload KYC information to an anchor in an authenticated way as described in SEP-6. Stellar Web Authentication is described in SEP-0010 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0010].

Get a JWT token.

Authenticate with a server and get a JWT token.

// Hold a strong reference to this to avoid being deallocated
let webAuthenticator = WebAuthenticator(authEndpoint: "http://your_api.stellar.org/auth", network: .testnet, serverSigningKey: "GBWMCCC3NHSKLAOJDBKKYW7SSH2PFTTNVFKWSGLWGDLEBKLOVP5JLBBP", serverHomeDomain: "yourserverhomedomain.com")
 if let keyPair = try? KeyPair(secretSeed: "SBAYNYLQFXVLVAHW4BXDQYNJLMDQMZ5NQDDOHVJD3PTBAUIJRNRK5LGX") {
 webAuthenticator.jwtToken(forKeyPair: keyPair) { (response) -> (Void) in
 switch response {
 case .success(let jwtToken):
 // use the token to do your calls
 case .failure(let error):
 // handle the error
 }
 }
 }
}

Create WebAuthenticator from stellar.toml

Creates the WebAuthenticator by loading the web auth endpoint and the server signing key from the stellar.toml file of the given domain.

let webAuthenticator = WebAuthenticator.from(domain:"yourserverhomedomain.com", network: .testnet)

The Web Authenticator can now be used to get the JWT token.

You can find more source code examples regarding SEP-0010 in the Web authenticator test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/web_authenticator/WebAuthenticatorTestCase.swift] of the SDK.

Txrep - SEP-0011

Txrep: human-readable low-level representation of Stellar transactions is described in SEP-0011 [https://github.com/stellar/stellar-protocol/blob/master/ecosystem/sep-0011].

For more details have a look to our Txrep examples

You can find more source code examples regarding SEP-0011 in this SDK test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/transactions/TransactionsLocalTestCase.swift] of the SDK.

Sponsored Reserves

Sponsored reserves allow an account (sponsoring account) to pay the base reserves for another account (sponsored account). While this relationship exists, base reserve requirements that would normally accumulate on the sponsored account now accumulate on the sponsoring account.

Both the Begin Sponsoring Future Reserves and the End Sponsoring Future Reserves operations must appear in the sponsorship transaction, guaranteeing that both accounts agree to the sponsorship.

Anything that increases the minimum balance can be sponsored (account creation, offers, trustlines, data entries, signers, claimable balances).

Sponsoring future reservers are described in detail in the Sponsored Reserves [https://developers.stellar.org/docs/encyclopedia/sponsored-reserves] chapter of the Stellar developer site.

Source code examples of using Sponsoring reserves with the SDK can be found in the Operations test cases [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/operations/OperationsRemoteTestCase.swift] of the SDK.

Next chapter is Stellar Ecosystem Proposals.

Streaming

This SDK provides streaming support for all Horizon endpoints [https://developers.stellar.org/api/introduction/streaming/] that can be used in streaming mode.

It is possible to use the streaming mode for example to listen for new payments for a given account as transactions happen in the Stellar network. You can use it like this:

First define your stream item somewhere to be able to hold the reference:

var streamItem:OperationsStreamItem? = nil

then create, assign and use it:

streamItem = sdk.payments.stream(for: .paymentsForAccount(account: destinationAccountId, cursor: nil))

streamItem.onReceive { (response) -> (Void) in
 switch response {
 case .open:
 break
 case .response(let id, let operationResponse):
 if let paymentResponse = operationResponse as? PaymentOperationResponse {
 switch paymentResponse.assetType {
 case AssetTypeAsString.NATIVE:
 print("Payment of \(paymentResponse.amount) XLM from \(paymentResponse.sourceAccount) received - id \(id)")
 default:
 print("Payment of \(paymentResponse.amount) \(paymentResponse.assetCode!) from \(paymentResponse.sourceAccount) received - id \(id)")
 }
 }
 case .error(let err):
 print(err?.localizedDescription ?? "Error")
 }
}

later you can close the stream item:

streamItem.close()

See: detailed code example [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/docs/QuickStartTest.swift#L222]

Next chapter is Path Payments.

SDEX and Liquidity Pools

Trading on Stellar is described under SDEX and Liquidity Pools [https://developers.stellar.org/docs/encyclopedia/liquidity-on-stellar-sdex-liquidity-pools#manage-buy-offer] on the official Stellar developer site.

Related source code examples can be found in the following test classes:

	Offers [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/offers/OffersRemoteTestCase.swift]

	Liquidity Pools [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/amm/AmmTestCase.swift]

	Trades [https://github.com/Soneso/stellar-ios-mac-sdk/blob/master/stellarsdk/stellarsdkTests/trades/TradesTestCase.swift]

Next chapter is Claimable Balances.

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

